

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS
A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

PRE MID-TERM EXAMINATION

PHYSICS (042)

MARKING SCHEME

Class: XI

Time: 1hr

Date: 09.01.26

Max Marks: 25

General Instructions:

(i) There are three sections A, B, and C with 13 questions in total, Section A has 5 Multiple Choice Questions of one mark each, Section B has 4 questions of two marks each and Section C has 4 questions of three marks each.

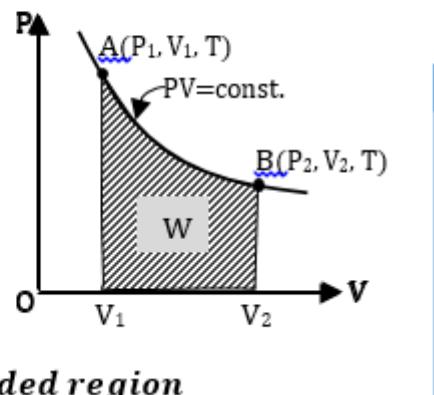
Section A

1. (c) Conduction	1
2. (b) decreases	1
3. (d) 40%	1
4. (b) Time rate of heat flow for a given temperature difference	1
5. (d) Assertion is incorrect, reason is correct.	1

Section-B

6.

Isothermal process: From the ideal gas equation $PV = \mu RT$ we have, at constant temperature, $PV = \text{const.}$ which is the equation of isothermal change. Now the work done in this process in expanding the gas from volume V_1 to V_2 is


$$W = \int_{V_1}^{V_2} P dV = \int_{V_1}^{V_2} \frac{\mu RT}{V} dV \\ = \mu RT \int_{V_1}^{V_2} \frac{dV}{V} = \mu RT [\ln V]_{V_1}^{V_2}$$

Or, $W = \mu RT \ln \frac{V_2}{V_1}$

Also, from $P_1 V_1 = P_2 V_2$, we have $V_2/V_1 = P_1/P_2$. With this

$$W = \mu RT \ln \frac{P_1}{P_2}$$

Also, $W = \text{Area of the shaded region}$

7. Lower fixed point on the wrong scale, $=-10^{\circ}\text{C}$

Let 'n' = number of the division between upper and lower fixed points on this scale. And Q= reading on his scale,
Then $C-0=Q-(-10)n$

Now, C= Incorrect Reading $=60^{\circ}\text{C}$

Correct Reading $=50^{\circ}\text{C}$

So, $(50-0)/100=60-(-10)/n$

$$50/100=70n$$

$$n=70 \times 100/50$$

$$n=140$$

On, the Celsius scale, the boiling point of water is 100°C .

So, $100-0/100=Q+10/140$

$$Q=140-10$$

$$Q=130^{\circ}\text{C}$$

2

8. **Isothermal process:**

Temperature: Remains constant ($\Delta T = 0$).

Heat Transfer (Q): Heat is exchanged with the surroundings to keep temperature stable.

Speed: Occurs slowly, allowing time for heat transfer.

Internal Energy (ΔU): No change in internal energy (as temperature is constant).

Examples: Melting ice, slow expansion/compression of gas in a thermally connected container.

1

Adiabatic Process:

Temperature: Changes (increases or decreases).

Heat Transfer (Q): No heat is exchanged with the surroundings ($Q = 0$).

Speed: Occurs rapidly, preventing heat exchange.

Internal Energy (ΔU): Changes due to work done on or by the system.

Examples: Rapid compression of air in a tire, operation of a refrigerator, insulated containers.

1

9. It states that the heat supplied to a system is partly used to increase its internal energy and the rest to do external work.

$$\Delta Q=\Delta U+W$$

2

Section-C

10. **Conduction:** Heat transfer through molecular collisions without actual movement of particles.

Example: Heating one end of a metal rod.

1

Convection: Heat transfer due to actual movement of fluid particles.

Example: Sea breeze—cool air from sea replaces warm air on land.

1

Radiation: Heat transfer through electromagnetic waves without any medium.

Example: Heat from the Sun reaching the Earth.

1

11. Consider a rod of cross-section A with temperature difference ΔT across length L.

Experimentally, heat current (H) is proportional to:

(i) cross-sectional area A

1

(ii) temperature gradient $\Delta T/L$

1

$$So, H \propto A \Delta T/L$$

Introducing proportionality constant K (thermal conductivity): $H=KA\Delta T/L$

1

12.

⊗ $C_P = \left(\frac{dQ}{dT} \right)_P$

or, $dQ = C_P dT$

From equation

$$dQ = C_P dT = dU + PdV$$

Again, from equation (2) su

$$dU = C_V dT$$

$$C_P dT = C_V dT + PdV \quad \dots$$

For one mole of gas ($\mu =$
equation,

$$PV = RT$$

$$PdV = RdT$$

From equations

$$(C_P - C_V) dT = RdT$$

$$\text{or } C_P - C_V = R$$

3

13.

(a) Efficiency

$$\eta = 1 - \frac{T_2}{T_1}$$

$$\eta = 1 - \frac{300}{500} = 1 - 0.6 = 0.4$$

1

(b) Work done

$$W = \eta Q_1 = 0.4 \times 600 = 240 \text{ J}$$

1

(c) Heat rejected

$$Q_2 = Q_1 - W = 600 - 240 = 360 \text{ J}$$

1

End of the Paper
